Number of Holes in Unavoidable Sets of Partial Words II By: F. Blanchet-Sadri,
نویسندگان
چکیده
We are concerned with the complexity of deciding the avoidability of sets of partial words over an arbitrary alphabet. Towards this, we investigate the minimum size of unavoidable sets of partial words with a fixed number of holes. Additionally, we analyze the complexity of variations on the decision problem when placing restrictions on the number of holes and length of the words.
منابع مشابه
Number of holes in unavoidable sets of partial words II
We are concerned with the complexity of deciding the avoidability of sets of partial words over an arbitrary alphabet. Towards this, we investigate the minimum size of unavoidable sets of partial words with a fixed number of holes. Additionally, we analyze the complexity of variations on the decision problem when placing restrictions on the number of holes and length of the words.
متن کاملNumber of holes in unavoidable sets of partial words I
Partial words are sequences over a finite alphabet that may contain some undefined positions called holes. We consider unavoidable sets of partial words of equal length. We compute the minimum number of holes in sets of size three over a binary alphabet (summed over all partial words in the sets). We also construct all sets that achieve this minimum. This is a step towards the difficult problem...
متن کاملUnavoidable Sets of Partial
The notion of an unavoidable set of words appears frequently in the fields of mathematics and theoretical computer science, in particular with its connection to the study of combinatorics on words. The theory of unavoidable sets has seen extensive study over the past twenty years. In this paper we extend the definition of unavoidable sets of words to unavoidable sets of partial words. Partial w...
متن کاملUnavoidable Sets of Partial Words of Uniform Length
A set X of partial words over a finite alphabet A is called unavoidable if every two-sided infinite word over A has a factor compatible with an element of X . Unlike the case of a set of words without holes, the problem of deciding whether or not a given finite set of n partial words over a k-letter alphabet is avoidable is NP-hard, even when we restrict to a set of partial words of uniform len...
متن کاملComputing Weak Periods of Partial Words
Fine and Wilf’s well-known theorem states that any word having periods p, q and length at least p + q − gcd(p, q) also has gcd(p, q), the greatest common divisor of p and q, as a period. Moreover, the length p + q − gcd(p, q) is critical since counterexamples can be provided for shorter words. This result has since been extended to partial words, or finite sequences that may contain a number of...
متن کامل